

Rebuilding Expression System & Its Applications For R&D Of Biologics.

Reconstituted cell-free protein synthesis kit

Biologics US 2024 3-4 of Oct, 2024

Takashi (Ebi) Ebihara, Ph.D. COO GeneFrontier Corporation

Corporate Summary

Founded: **Oct 13**th, **2010** (renewed)

Shareholder: KANEKA Corporation (100%)

People: **14** (Ph.D. 8, MS 1)

Place: Chiba, Japan

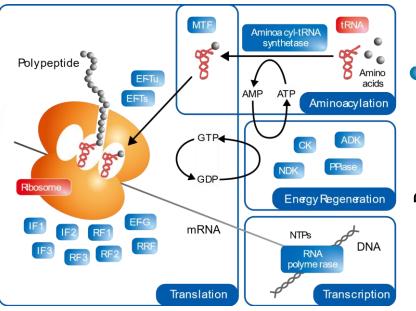
Mission: Rebuilding and Manipulating Biological system

for Inspiring the world!

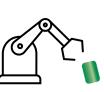
For more information

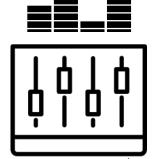
-Customize expression toolbox for your research-

Only necessary molecules for transcription/translation

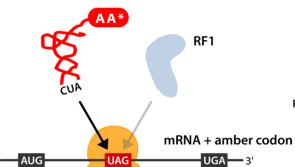


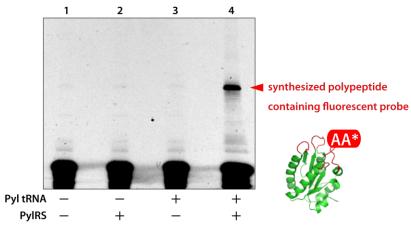
- ✓ Rebuilt cell-free system
- ✓ Tunable for your biologics
- ✓ Simple, Fast
- ✓ Suited for High throughput system
- ✓ Very low contaminants





Totally constructive, molecular based system




Solve of the state of the state

Translation - RF1

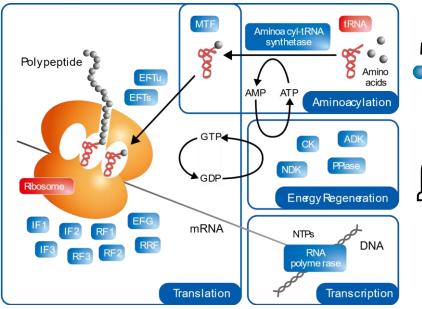
suppressor tRNA + non-natural amino acid

Ready-made kit is coming soon!

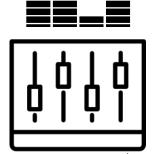
-Customize expression toolbox for your research-

Only necessary molecules for transcription/translation

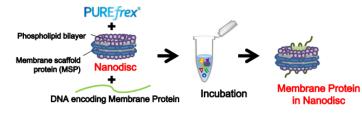
- ✓ Rebuilt cell-free system
- ✓ Tunable for your biologics
- ✓ Simple, Fast
- ✓ Suited for High throughput system
- ✓ Very low contaminants



For more information



Totally constructive, molecular based system

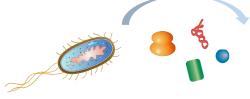


<Ex, Membrane protein with Nanodisc; artificial membrane-like structure>

10 μM Nanodisc CLDN1-AT

(-) (+) (-) (+)	to	tal	SI	ΙÞ	ppt		
	(-)	(+)	(-)	(+)	(-)	(+)	

The condition of membrane protein synthesis

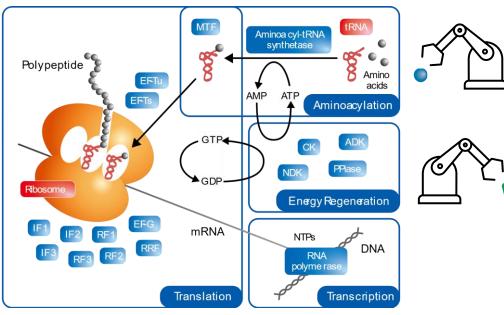

Reaction mix	Template DNA	Incubation
PURE <i>frex</i> ® 2.0 +Nanodisc (MSP1E3D1-His POPC*, final 10 μM)	PCR product	37℃, 4 h

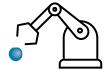
*Ref: Denisovet al. (2007) J.Biol.Chem., vol. 282, p. 7066.

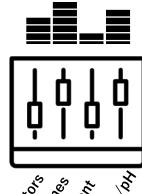
Solubilized hCLDN1 was synthesized using PURE frex® and Nanodisc.

-Customize expression toolbox for your research-

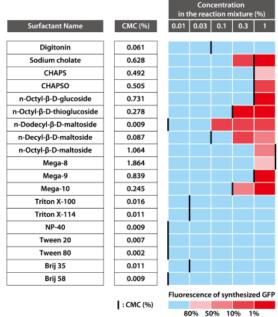
Only necessary molecules for transcription/translation




- ✓ Rebuilt cell-free system
- ✓ Tunable for your biologics
- ✓ Simple, Fast
- ✓ Suited for High throughput system
- ✓ Very low contaminants


Totally constructive, molecular based system

For more information


Ha tood Sold of the second seco Doto Sent

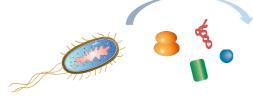
Experimental conditions for protein synthesis

Reaction mixture	Incubation	Template DNA
PUREfrex®2.1 (4 mM GSH) + Sufractants	37°C 4 h	sfGFP PCR product (1 ng/µL)

→ Measurement of GFP fluorescence

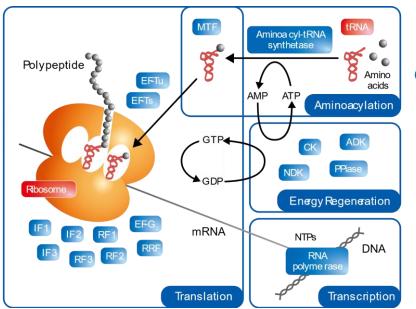
- · Most surfactants did not inhibit the protein synthesis reaction by PUREfrex® below the CMC.
- Some surfactants such Triton X-100 and Tween 20 could be used even above the CMC.

100%: (-) surfactant

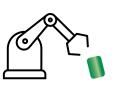

For more information

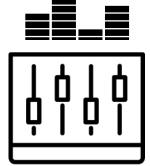
-Customize expression toolbox for your research-

Only necessary molecules for transcription/translation



- ✓ Rebuilt cell-free system
- ✓ Tunable for your biologics
- ✓ Simple, Fast
- ✓ Suited for High throughput system
- ✓ Very low contaminants





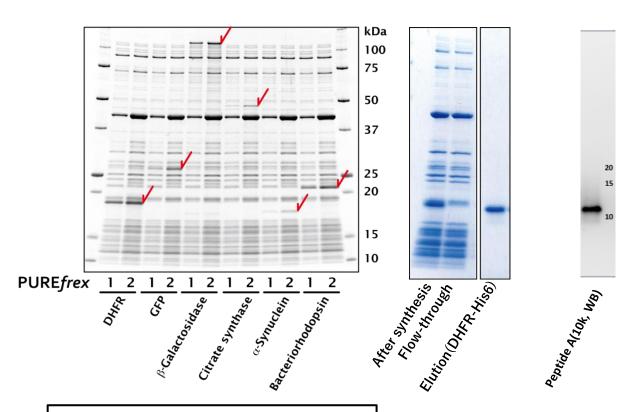
Totally constructive, molecular based system

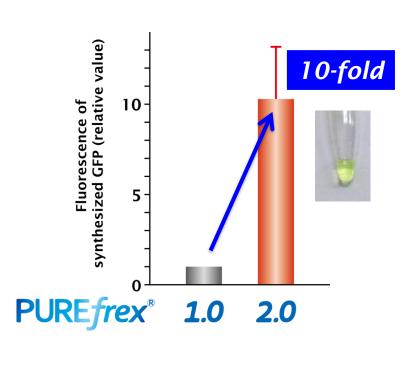
Solo of other of the solo of t

Shuthesized 1000.00 1000.986 1

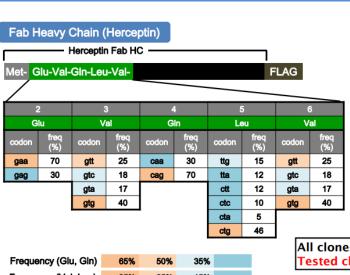
<u>Versatile and Robust</u> <u>Platform for protein synthesis</u>

<u>Huge potential as</u> <u>New platform in Biotech industry</u>



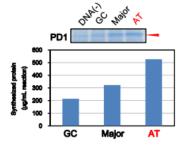


-Having good productivity-



- Reaction at 37°C for 4 h
- 0.5 µL of reaction mix/lane
- stained with Oriole (Bio-Rad) and analyzed with an image analyzer (LAS)
- ✓ Good expression for many proteins, small to large.
- ✓ Good purity with simple purification.
- ✓ Good productivity, ~g/L.

All clones; 384 Tested clones; 56 Frequency (Val, Leu)


*Frequency is calculated from Codon Usage Database in Kazusa DNA Res.Inst, (E. coli K-12 strain) Major

Design of DNA template is important. Manual is Free to download from our Web site here

Organism Homo sapiens 36Thr-150Glu-(Hisx8) 124 a.a.

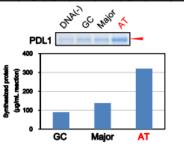
14,148 Da Molecular weight


N-term	1	2(38)	3(37)	4(38)	5(39)	6(40)	GC(%) 1-6 a.a.
type	Met	Thr	Phe	Ser	Pro	Ala	1-6 a.a.
GC	alg	800	ttc	toc	cog	909	67%
Major	alg	acc	ttt	tct	ccg	gcg	56%
AT	atg	act	ttt	tca	cca	gct	39%

PTGDS

Homo sapiens Synthesized region 23Ala-190Gln 169 a.a. 18.829 Da

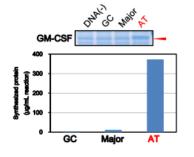
N-term type	1	2(23)	3(24)	4(25)	5(26)	6(27)	GC(%) 1-6 a.a.
type	Met	Ala	Pro	Glu	Ala	Gin	1-6 a.a.
GC	atg	gca	ccg	gee	gca	cag	61%
major	atg	gcg	ccg	gaa	gcg	cag	72%



PDL1

Organism Homo sapiens Synthesized region 18Ala-239Thr-(Hisx8) 231 a.a.

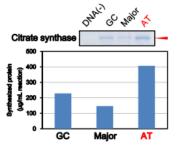
26,593 Da Molecular weight


N-term	1	2(18)	3(19)	4(20)	5(21)	6(22)	GC(%)
type	Met	Ala	Phe	Thr	Val	Thr	1-6 a.a.
GC	atg	gog	ttc	acc	gtg	acc	61%
major	atg	gcg	ttt	acc	gtg	acc	56%
AT	atg	gct	ttt	act	gta	aca	33%

GM-CSF

Organism Synthesized region 18Ala-144Glu 128 a.a. Molecular weight 14.608 Da

1	N-term	1	2(18)	3(19)	4(20)	5(21)	6(22)	GC(%)	ı
	type	Met	Ala	Pro	Ala	Arg	Ser	1-6 a.a.	l
1	GC	atg	gog	ccg	gcg	ege	toc	83%	ı
1	major	atg	gcg	ccg	gcg	ege	tct	78%	l
1	AT	ato	gca	oct	act	aga	tca	50%	ı

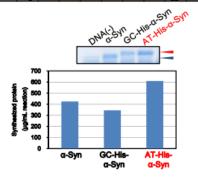


Citrate Synthase

Organism Saccharomyces cerevisiae Synthesized region 38Ser-479Asn Length 443 a.a.

49,346 Da Molecular weight

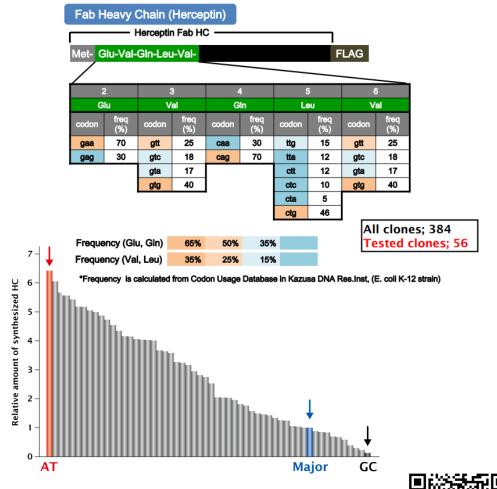
N-term		2(36)	3(39)	4(40)	5(41)	0(42)	GC(%)
type	Met	Ser	Ser	Ala	Ser	Glu	1-6 a.a.
GC	atg	toc	toc	gog	toc	gag	67%
major	atg	tet	tct	gcg	tct	gaa	44%
AT	atg	tca	tca	gct	tca	gaa	39%

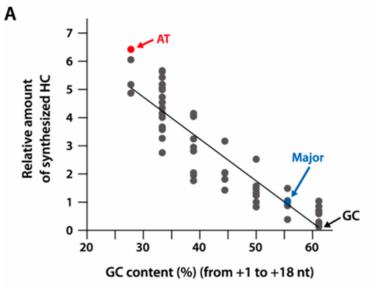


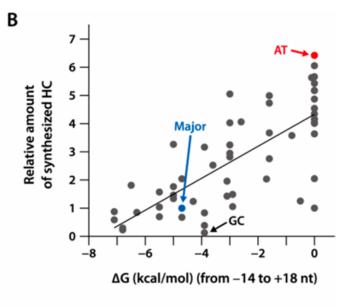
His-α-Synuclein

Synthesized region (Hisx6)-(Gly-Ser)-2(10)Asp-140(148)Ala

Length 148 a.a. Molecular weight 15,427 Da

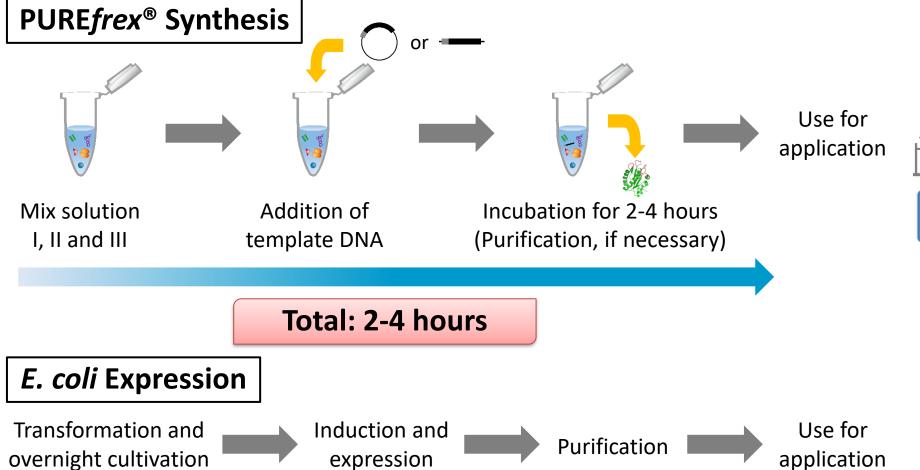

Tag	1	2	3	4	5	6	7	8	9	GC(%)
type	Met	His	His	His	His	His	His	Gly	Ser	1-9 a.a.
GC	atg	CBC	cac	cac	CBC	cac	CAC	ggt	tct	59%
AT	atg	cat	cat	cat	cat	cat	cat	ggt	tct	37%

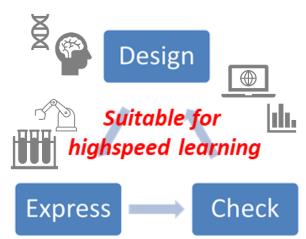

-KSF; AT rich codon on N-term-



Design of DNA template is important.

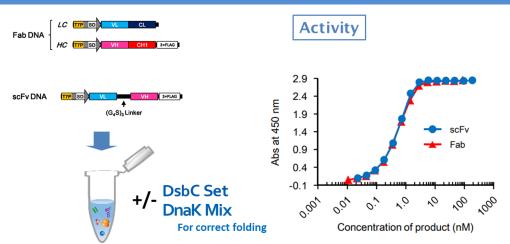
Manual is Free to download from our Web site here.

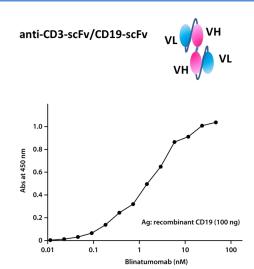

	1	2	3	4	5	6			
Name	Met	Glu	Val	Gln	Leu	Val	GC (%)	ΔG (kcal/mol)	
AT	atg	gaa	gta	caa	tta	gtt	28	0.0	
Major	atg	gaa	gtg	cag	ctg	gtg	56	-4.7	
GC	atg	gag	gtg	cag	ctg	gtc	61	-3.9	

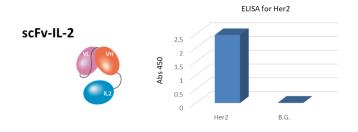

Murakami et al. (2024) Int. J. Mol. Sci. 2024, 25(10), 5264

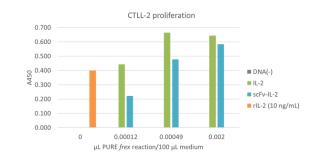


-Improve Expression from Days to Hours-


to industrial applications


PUREfrex®


-Expression of scFv, Fab and more-



Murakami et al. (2019) Sci. Rep. vol.9, p.671. (Supplementary Information)

	1	2	3	4	5	6	7	8	9	10
	Proinsulin Aspart	Proinsulin Lispro	Proinsulin Glargine	Regular Proinsulin	Insulin A Chain	Insulin B Chain	Insulin A Chain Heterodimer	Insulin B Chain Heterodimer	Oxytocin	Glucagon
PURE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Clm24	X	Х	X	X	✓	Х	✓	✓	✓	✓
BL21	X	Х	X	Х	✓	X	✓	✓	✓	X
759	✓	✓	✓	✓	✓	✓	✓	✓	✓	Х
	11	12	13	14	15	16	17	18	19	20
	Glucagon Like Peptide 1 mutant (GLP-1 mut)	Peptide 1	Insulin Like Growth Factor	Growth Hormone (GH)	Leptin	Vaso- pressin	Angiotensin II	Parathyroid Hormone (PTH)	Somato- statin	Leuprolide
PURE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Clm24	✓	✓	Х	✓	✓	✓	✓	✓	✓	✓
BL21	X	X	X	X	X	Х	✓	✓	✓	✓
759	✓	✓	х	✓	✓	✓	✓	х	✓	✓

Internalization analysis

Anti-HER2-IgG

BT-474 cells were surface-labeled at 4°C for

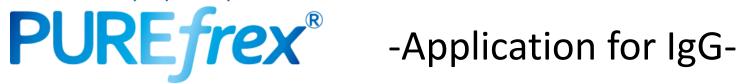
60 min with the binding medium (DMEM, 3% BSA, 20 mM HEPES (pH 7.4)) containing

10 nM of "purified IgG" or "Trastuzumab".

Cells were washed five times with the

binding medium and incubated at 37°C for

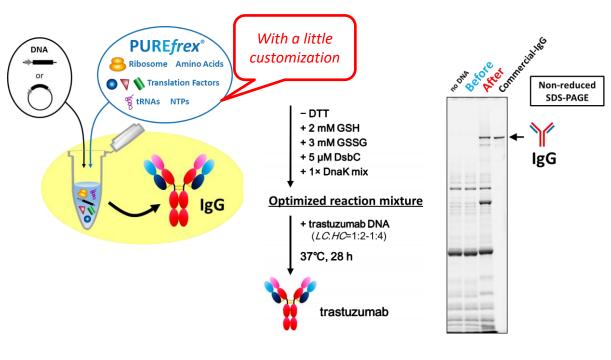
3h. Cells were then fixed and processed for

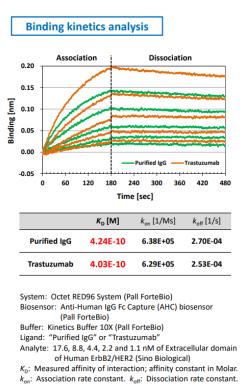

dual-label indirect immunofluorescence

microscopy. CD63 (Lamp3) is marker of late

endosome

endosome


CD63



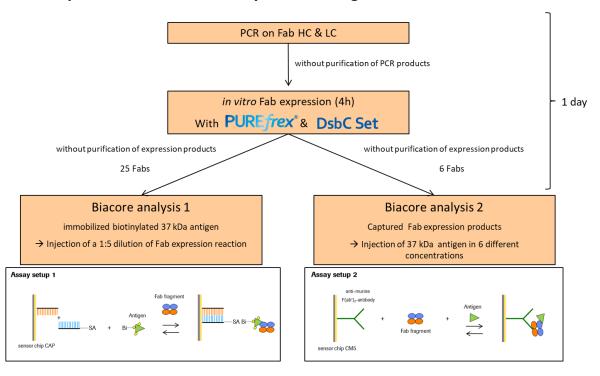
Trastuzumab

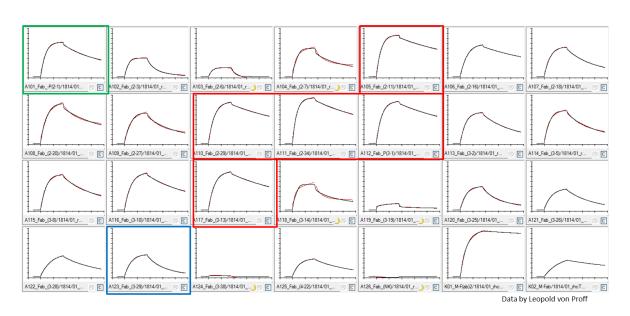
Purified IgG

Only 2 days for IgG!!

endosomes and lysosomes. White arrows indicate partial co-localization of anti-HER2-IgG with CD63. Bar indicates 20 µm. Murakami et al. (2019) Sci. Rep. vol.9, p.671.

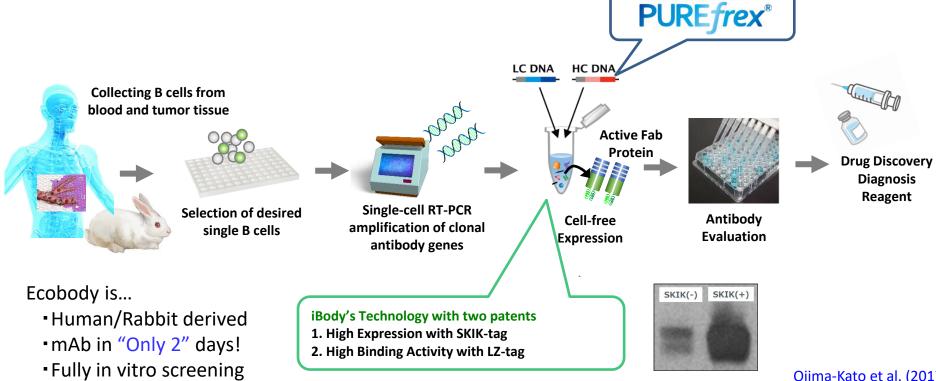
✓ Full size IgG can be synthesized.


Poster PSSJ 2017



In vitro expression and Biacore analysis of Fab fragments

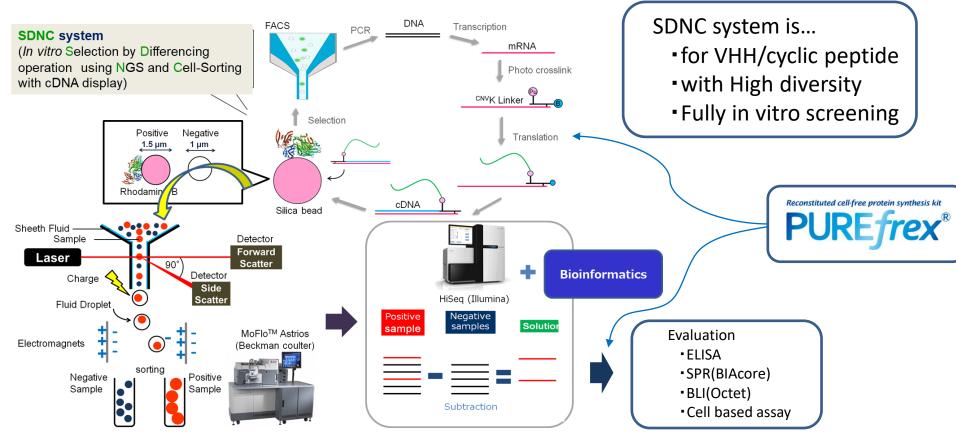
Kinetic analysis of 25 Fab binders


→ Selection of Fabs for further kinetic analysis

Ojima-Kato et al. (2017) Sci. Rep., 7, 13979. https://www.ibody.co.jp/en/

No culture

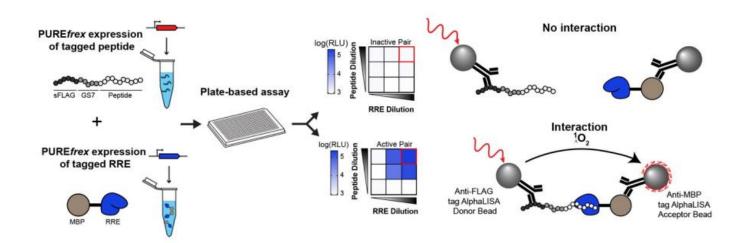
✓ Active Fab is expressed/screened in HT manner.

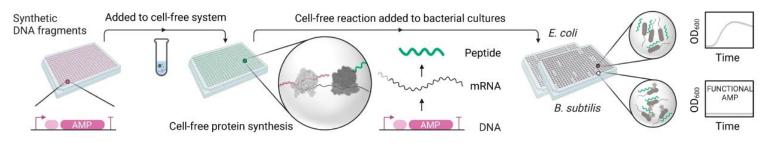


Epsilon Molecular Engineering

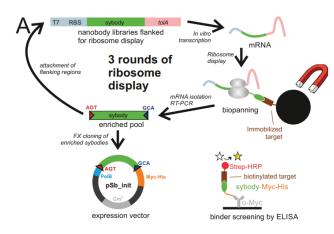
Molecular Design for Human Life

https://www.epsilon-mol.co.jp/eng/

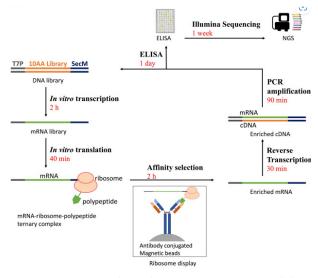

✓ PURE frex is applied for cDNA display based screening.



-Broad applications, yet to come!-

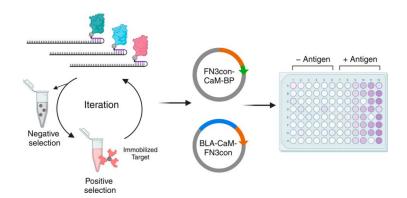


Wong et al. (2024) bioRxiv https://doi.org/10.1101/2024.03.25.586624.

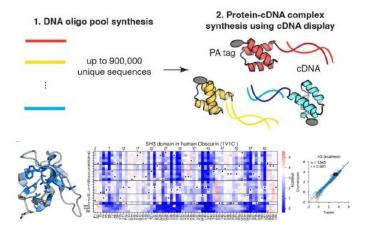

WET LAB EXPERIMENT: cell-free production and activity test of AMPs (24 hr)

Pandi et al. (2023) Nat Communications. vol.14(7197).

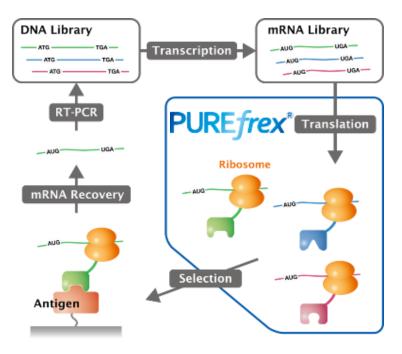
Zimmermann I. et al. (2018) eLife, 7, e34317.



Jia B. et al. (2024) J Biosci Bioeng, 137(4):321-328.

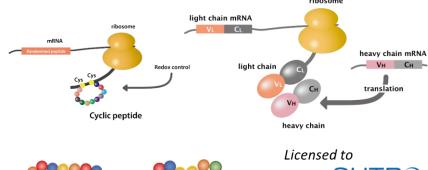


-Broad applications, yet to come!-


Chui Z. et al. (2024) ACS Sens, 9(6):2846-2857.

Tsuboyama et al. (2023) Nature, 620, p434.

in vitro protein selection technology

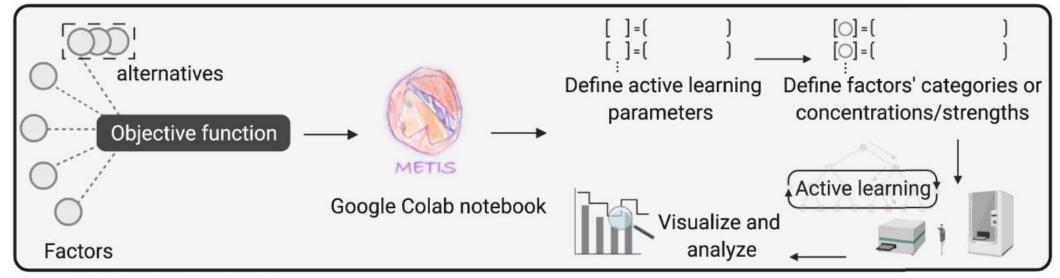


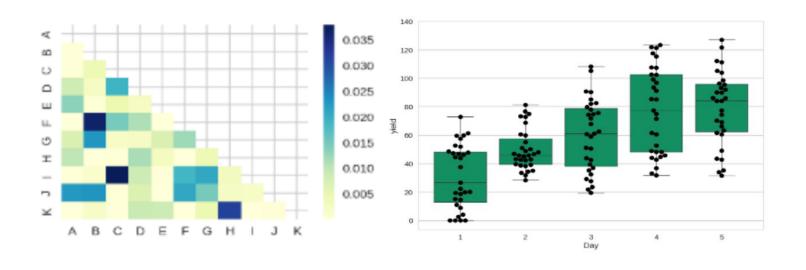
Licensed technology under JP4931135 etc.

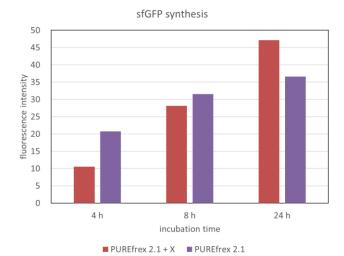
- Advanced screening system for Biologics
- mAb (scFv / Fab)
- VHH
- Cyclic peptide

High Selection Efficiency

- Completely molecular based system
- >10¹² diversity


Bicyclic peptide




-Broad applications, yet to come!-

Pandi A et al. (2022) Nature Communications, 13, 3876.

Contact information

For reagent use for expression / screening of biologics

https://purefrex.genefrontier.com/

PURE frex RD For screening service / collaboration / technology transfer for generation of new biologics

Takashi Ebihara, Ph.D., COO, GeneFrontier

E-mail: ebihara@genefrontier.com